Neural sensitivity to interaural time differences: beyond the Jeffress model.

نویسندگان

  • D C Fitzpatrick
  • S Kuwada
  • R Batra
چکیده

Interaural time differences (ITDs) are a major cue for localizing the azimuthal position of sounds. The dominant models for processing ITDs are based on the Jeffress model and predict neurons that fire maximally at a common ITD across their responsive frequency range. Such neurons are indeed found in the binaural pathways and are referred to as "peak-type." However, other neurons discharge minimally at a common ITD (trough-type), and others do not display a common ITD at the maxima or minima (intermediate-type). From recordings of neurons in the auditory cortex of the unanesthetized rabbit to low-frequency tones and envelopes of high-frequency sounds, we show that the different response types combine to form a continuous axis of best ITD. This axis extends to ITDs well beyond that allowed by the head width. In Jeffress-type models, sensitivity to large ITDs would require neural delay lines with large differences in path lengths between the two ears. Our results suggest instead that sensitivity to large ITDs is created with short delay lines, using neurons that display intermediate- and trough-type responses. We demonstrate that a neuron's best ITD can be predicted from (1) its characteristic delay, a rough measure of the delay line, (2) its characteristic phase, which defines the response type, and (3) its best frequency for ITD sensitivity. The intermediate- and trough-type neurons that have large best ITDs are predicted to be most active when sounds at the two ears are decorrelated and may transmit information about auditory space other than sound localization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sound localization: Jeffress and beyond.

Many animals use the interaural time differences (ITDs) to locate the source of low frequency sounds. The place coding theory proposed by Jeffress has long been a dominant model to account for the neural mechanisms of ITD detection. Recent research, however, suggests a wider range of strategies for ITD coding in the binaural auditory brainstem. We discuss how ITD is coded in avian, mammalian, a...

متن کامل

Lateralization of bands of noise: effects of bandwidth and differences of interaural time and phase.

The effects of stimulus bandwidth on lateralization of narrow bands of noise were investigated with an acoustic pointing task. Stimuli were narrow bands of noise (centered on 500 Hz with bandwidths ranging from 50-400 Hz) that contained interaural time delays and/or interaural phase shifts. The overall extent of lateralization and sidedness was found to vary greatly as a function of stimulus ba...

متن کامل

Coding interaural time differences at low best frequencies in the barn owl.

In birds and mammals, precisely timed spikes encode the timing of acoustic stimuli, and interaural acoustic disparities propagate to binaural processing centers. The Jeffress model proposes that these projections act as delay lines to innervate an array of coincidence detectors, every element of which has a different relative delay between its ipsilateral and contralateral excitatory inputs. Th...

متن کامل

Interaural delay-dependent changes in the binaural difference potential of the human auditory brain stem response.

Binaural difference potentials (BDs) are thought to be generated by neural units in the brain stem responding specifically to binaural stimulation. They are computed by subtracting the sum of monaural responses from the binaural response, BD = B - (L + R). BDs in dependency on the interaural time difference (ITD) have been measured and compared to the Jeffress model in a number of studies with ...

متن کامل

Stochastic model explains role of excitation and inhibition in binaural sound localization in mammals

Short title: Excitation and inhibition in binaural sound localization Summary Interaural time differences (ITDs), the differences of arrival time of the sound at the two ears, provide a major cue for low-frequency sound localization in the horizontal plane. The first nucleus involved in the computation of ITDs is the medial superior olive (MSO). We model the neural circuit of the MSO using a st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2000